Extensions 1→N→G→Q→1 with N=C28 and Q=C22

Direct product G=N×Q with N=C28 and Q=C22
dρLabelID
C22×C28112C2^2xC28112,37

Semidirect products G=N:Q with N=C28 and Q=C22
extensionφ:Q→Aut NdρLabelID
C28⋊C22 = D4×D7φ: C22/C1C22 ⊆ Aut C28284+C28:C2^2112,31
C282C22 = C2×D28φ: C22/C2C2 ⊆ Aut C2856C28:2C2^2112,29
C283C22 = C2×C4×D7φ: C22/C2C2 ⊆ Aut C2856C28:3C2^2112,28
C284C22 = D4×C14φ: C22/C2C2 ⊆ Aut C2856C28:4C2^2112,38

Non-split extensions G=N.Q with N=C28 and Q=C22
extensionφ:Q→Aut NdρLabelID
C28.1C22 = D4⋊D7φ: C22/C1C22 ⊆ Aut C28564+C28.1C2^2112,14
C28.2C22 = D4.D7φ: C22/C1C22 ⊆ Aut C28564-C28.2C2^2112,15
C28.3C22 = Q8⋊D7φ: C22/C1C22 ⊆ Aut C28564+C28.3C2^2112,16
C28.4C22 = C7⋊Q16φ: C22/C1C22 ⊆ Aut C281124-C28.4C2^2112,17
C28.5C22 = D42D7φ: C22/C1C22 ⊆ Aut C28564-C28.5C2^2112,32
C28.6C22 = Q8×D7φ: C22/C1C22 ⊆ Aut C28564-C28.6C2^2112,33
C28.7C22 = Q82D7φ: C22/C1C22 ⊆ Aut C28564+C28.7C2^2112,34
C28.8C22 = C56⋊C2φ: C22/C2C2 ⊆ Aut C28562C28.8C2^2112,5
C28.9C22 = D56φ: C22/C2C2 ⊆ Aut C28562+C28.9C2^2112,6
C28.10C22 = Dic28φ: C22/C2C2 ⊆ Aut C281122-C28.10C2^2112,7
C28.11C22 = C2×Dic14φ: C22/C2C2 ⊆ Aut C28112C28.11C2^2112,27
C28.12C22 = C8×D7φ: C22/C2C2 ⊆ Aut C28562C28.12C2^2112,3
C28.13C22 = C8⋊D7φ: C22/C2C2 ⊆ Aut C28562C28.13C2^2112,4
C28.14C22 = C2×C7⋊C8φ: C22/C2C2 ⊆ Aut C28112C28.14C2^2112,8
C28.15C22 = C4.Dic7φ: C22/C2C2 ⊆ Aut C28562C28.15C2^2112,9
C28.16C22 = C4○D28φ: C22/C2C2 ⊆ Aut C28562C28.16C2^2112,30
C28.17C22 = C7×D8φ: C22/C2C2 ⊆ Aut C28562C28.17C2^2112,24
C28.18C22 = C7×SD16φ: C22/C2C2 ⊆ Aut C28562C28.18C2^2112,25
C28.19C22 = C7×Q16φ: C22/C2C2 ⊆ Aut C281122C28.19C2^2112,26
C28.20C22 = Q8×C14φ: C22/C2C2 ⊆ Aut C28112C28.20C2^2112,39
C28.21C22 = C7×C4○D4φ: C22/C2C2 ⊆ Aut C28562C28.21C2^2112,40
C28.22C22 = C7×M4(2)central extension (φ=1)562C28.22C2^2112,23

׿
×
𝔽